Qlig Cloud Messaging APl Guide

QligSOFT provides Cloud API for third party applications to send Secure Messages to Qliq users. Following
steps need to be performed prior to sending messages:

1. The Application provider must register for a Group Account. Make sure that “My Organization” is
selected.

qllq So FT Use Cases AP| & Integration Security & HIPAA About Login

Get Started

QLIQ REGISTRATION Fields marked with an are required

Py T TR Whether you're registering for I am registering: @ Myself '« My Organization
% IMark Z_qndersn =
—

anindividual Qliq account or y
First Name Last Name

Mo ou’re the group administrator,
He needs attention right a _V g p
away. Please contact Dr. you've come to the right place.
Masgn. 'l e there in 10 min
—— About Q“q Organization

gt s oy Qllq i only reaitirne’ T _
" fessa Send

to-end encrypted, secure

gwertyuiop communication solution for

& zxcvbnm @ best of all, it’s Free!
- E-Mail Address
Bele -~ |wa

—

2. Once the group is activated, the Admin of the group must generate an API key in order to use Cloud
Messaging.

qliq Solutions | Resources | Company | Blog | Demo10Krishna | LOGOUT |

v Users Subgroups External Groups Devices Admins Security Settings gligSTOR gligDIRECT Admin Activity

User Activity Message Activity Service Logs | Cloud Messaging AP| | Profile

gligSoft gliglD: 440622152 Admin Admin guide | User guide
3605 Vineyard Way. Dallas, TX 75234 = 9722352606 Edit

HliqSoft Cloud Messaging API

Cloud Messaging API

API URL 3 Click to download APl Guide
https:.//webprod.gligsoft.com/secure_messages
/send
APl Key This key is used in sending secure
messages
Generate API Key e
Reply APl The replies to messages are posted to

‘ URL this URL

Once the key is generated, you can start using the Cloud Messaging API from your Application.

Qliq Cloud Messaging API is a RESTful POST command with parameters like below:

4 N
https://capi.gligsoft.com/secure messages/send?api key
=785bc5068fb1dd505a6ef7f1fb40232%&to=demo2@pilot.com&f
rom=demcl@pilct.com&subject=Welcome&text=First%20Messa

ge
N J

NOTE: Use %20 or + for space in Query String. Particularly for “subject” or “text” field.
If you are trying to send messages longer than 150 characters, User JSON Payload format to sent the message

Request URL: https://capi.gligsoft.com/secure_messages/send

Request: POST

Response: JSON Data

https://webprod.qliqsoft.com/secure_messages/send

Parameter M/O Description

api_key M This should match the generated APl key from the Admin Portal

to M This is the email address of the recipient. If the person with
email is already a member of the Qlig group, the message is
routed to the Qlig App on the user’s device. If you want to send
a broadcast message to all members of the Group or Subgroup,
you should use the QligID of the Group or Subgroup in “to”
field.

from 0 This is the email address of the member. You must create a
member with valid email before using the email in the from
field. If the from field is not specified, the Group’s Point of
Contact is used for the From field. Recipient will see the
message from this from user.

subject 0] You can specify optional subject for the text. Qliq uses subject
field to group the messages into conversation.

priority 0] Set the priority of the message. The options are “fyi”, “asap”,
“urgent”.

text M This is the actual text of the message.

conversation_id | O This can be used to group all the messages inside a single

conversation.

Cloud API JSON Body Example:

METHOD SCHEME :/f HOST [":" PORT] [PATH ["?" QUERY]|

POST - & https://webprod.qligsoft.com/secure_messages/send ﬁ

» QUERY PARAMETERS

HEADERS “ |4 Form = 4 » BODY Text
{
¢ Content-Type : | application/json % "api_key": "shshfsjdhgfjhsdgfhsdhjfsd",
"to": "to@@cloudapi.net",
- . “from": "from@cloudapi.pilot”,
+ Add header & Add authorization T "subject": "Test Message",
"text": "I would like to see if this works",
71 }
Text | JSON | XML | HTML ¢! Enable body evaluation W length: 16

You can also send an attachment with the request as MIME. You can only send one attachment per request.
PDF, WORD, EXCEL, PNG/JPG are allowed to be sent as attachments.

Here is an example JSON payload of sending an attachment using Cloud Messaging API

"api_key": "<from cloud messaging api tab>",

n,n

"from": "<email of the gliq user in the group",

"to": "<email/qgligiD/mobile number of the recipient”,
"subject": "String here",

"text": "String here",

"attachment": {

n,on

"content_type": "image/png",

"file_name": "glig-gr.png",

"base64":
"iVBORWOKGgoAAAANSUhEUgAAAPgAAADAAQMAAAD7H7IIAAAABIBMVEUAAAD///+12Z/dAAABCUIEQVRYw+
WZQRLDMAWC++n6SGSWWmnD4DKEI82J42FsAz+fxDP8Ty7JkkoWsA3Twd6tIE/kdksnrcqjoO0V5q4UkSiiksHOf
n5VT+x3JTQ3i/9TOWnNE3qqfvTPWD56MP8MN8IM57u27bBFggl+8PiiK3UFnFrj8obWL5K5LLEpwxrmAm6+cDoijl
9AC5¢1sB9RWWH2eGUCOGLRwbcwNj8AfD6QzFUFUD6qj2w++eEtDi6Z2ZzuEKh2YcYpmksToTg2ks91PhghkFGq
41LdZIDjcU6NgTjsHmiV+TOpyuc3HfGTCMr73A2sVTUEa+02LfVKYzmI3Q5BMyDJkclhncl1494dQ3n3/+wGvUwfoE
YT/GgAAAABJRUSErk)ggg=="

}

}

If you would like to send multiple attachments, you can use the conversation_id returned for the first
attachment, and use it to send the second attachment.

Sending Broadcast Message to Group

Your application can send a broadcast message to an entire group or a subgroup or external group. When you
send a broadcast message, everyone in the group will receive the message. If a recipient replies, the reply
message goes to the sender’s address only.

In Qlig service each group is identified by unique “QligID”. You can find the QligID of the group you are
interested in from the Admin Portal.

Sending multiple messages for within the same conversation
Qlig provides the ability to group multiple messages between a sender and a receiver into a conversation.

Typically the conversation is tied to a subject. In healthcare, it can be used to tied to one episode, one patient
and/or one problem.

Each conversation is uniquely identified by conversation_id. To send messages that belong to one
conversation, first send the message without a conversation_id parameter, the service returns system
generated unique conversation_id which should be used while sending subsequent messages. Whenever you
would like to change the conversation, send the message without conversation_id. This will create a brand
new conversation.

wac Muuviy iGooo Y muu ¥ USIVILG LUYD LIUUU IMISSSGyng me 1 1 UG

qliglD: 783875978 Admin Admin guide | User guide

4 - 800 2 Edit

Memorial Hospital
Main Ave. Cary, NI

Create
Subgroups sungroup
®

D Name OnCall Group Private Group Broadcast Messaging Group Messaging # of Users Admin

737392505 | Test Subgroup v v 2 Krishna K. Kurapati CISSP O
102807820 | Billing v v v 2 Krishna K. Kurapati CISSP o
285828331 || Front Office v v 2 Krishna K. Kurapati CISSP o
469841783 | OnCall v v v 10 Krishna K. Kurapati CISSP o
875511576 | qligSoft v 18 Krishna K. Kurapati CISSP o
998808953 | Surgery v v 7 Krishna K. Kurapati CISSP e)
854101883 | Hospitalists v v 2 Krishna K. Kurapati CISSP o
477641434 | Pediatrics v 18 Krishna K. Kurapati CISSP o
quq Solutions | Fesources | Company | Blog | Krishna K Kurapati CISSP | LOGOUT |

| - Users Subgroups Devices Admins Security Setlings gligSTOR gligDIRECT Admin Activity

User Activity ~Message Activity Service Logs Cloud Messaging APl Profile

Memorial Hospital - gliglD: 783975978 Admin Admin guide | User guide
Main Ave. Cary, NC 27714 - B005551212 Edit

External Groups

o D . v

D Group Name Admin Name Admin Email Status
929794883 CollabStreams John Sko skowlund@collabstreams.com accepted O

ngito1ofi

Below is an example of sending Broadcast message to “OnCall” subgroup:

4 ™

https://capi.gligsoft.com/secure_messages/send?apl_ key
=785bc5068fbldd505a6ef7f1fb4023295t0=469841783&from=de
mol@pilot.com&subject=Welcome&text=First%Z20Message

- J

Following HTTP Responses you will receive when sending message:

e 202 —The API executed successfully and the message is queued.
® 400 -The request was incorrect, please make sure that passed arguments are matching format in
method's documentation.

401 — Unauthorized. You attempt to authenticate with an invalid API key.

403 — Forbidden. Not allowed to send message.

404 — Not Found. You attempt to request a resource which doesn't exist. Check your URL

500 — Internal Server Error. Something unexpected happened on our end. Please try again or contact
support.

Testing from Command Line

If you have command line tool such as CURL http://curl.haxx.se/ you can run the test the message delivery directly

$ curl --data \
"api key=02a7eaf78181d2c9f5f6800cfb6a8799&to=827790129%9&s
ubject=111111111&text=Hello%20again"

https://capi.gligsoft.com/secure messages/send

$ {"status":"Message queued for
delivery", "conversation id":"65e314a805c354lac62284177fa
DEGES","message_id":"cb544&b71a88db5?f639db54QUEEECCB"}-J/

o

If the request is good, you will see a JSON response to the curl command. You will see conversation_id that

before integrating the logic into your app. Below is an sample of testing from command line.

can be used to send subsequent message to the same conversation and the message_id that can be used to
query the message status.

Below is the example of sending message with attachment. Make sure that the attachment is in the current
directory.

//; curl -X POST =-F ﬁx\

"api key=02a7eaf78181d2c9f5£6800cfb6a8799"” -F
“to=827790128" -F “from=test@test.com” -F
“subject=111111111" -F “text=Hello%20again" -F
attachment=@GNYHA.pdf
https://capi.gligsoft.com/secure messages/send

5 {"status":"Message queued for
delivery","conversation 1d":"65e314a805c3541acb2284177
\\éaDSUEE","message_id":"cb64deb71a88db5?f639db54BDEZECEM/

"
]

http://curl.haxx.se/

With the example above, the request packet looks like this:

POST /secure_messages_send HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Content-Type: multipart/form-data; boundary=38516d25820c4a9aad05fled2cb442f4

Host: capi.qligsoft.com

--38516d25820c4a9aad0@5f1ed42cb442ft4

Content-Disposition: form-data; name="file"; filename="GNYHA.pdf"
Content-Type: application/pdf

Content-Encoding: base64

H4sICIOTXVQAA3BhZ2UucGRmAAVOzO1VCE7MLchIVQhITE8FAAYOwbUQAAAA
--38516d25820c4a9aad05f1e42cb442f4- -

Notes:

1. Make sure the you use HTTPS and POST method when submitting the RESTful API
2. Make sure that the subgroup, group, external group QliglID is correct before adding it to “to” field of the request.
3. Make sure that the email address is correct in the to field if you are sending message to specific user.

Retrieving Message Status

The Cloud API provides a RESTful API for querying the status of the message. The message_id is mandatory to query for
the status of the message along with the api_key.

Request URL: https://capi.qgligsoft.com/secure_messages/message_status

Request: GET
Response: JSON Data

The response to the GET request is a JSON array. The array contains one or more recipient’s message status. If the
message is single party message, expect to see one element in the array. If the message is a group or broadcast
message, you might see more than one element in the array.

If the message is not delivered to any recipients, expect to see array with no elements (ex: [])

Each element will have the email address of the recipient and the delivery time in Unix Epoch Time
https://en.wikipedia.org/wiki/Unix_time. It can contain read time as well in Unix Epoch Time.

The Unix Epoch Time can be converted to local time for display or other purposes.
[{“to”: <email_address1>,
“delivered_at”: <unix_epoch_timel>,

“read_at”: <unix_epoch_timel>

https://webprod.qliqsoft.com/secure_messages/send
https://en.wikipedia.org/wiki/Unix_time

}

{ “to”: <email_address2>,
“delivered_at”: <unix_epoch_time2>,
“read_at”: <unix_epoch_time2>

}

]

If the recipient did not read the message, the read_at will not be present.

$ curl

https://capi.qgligsoft.com/secure messages/message sta
tus?api key=02a7eaf78181d2c9f5f6800cfb6a8799\&message
_1d=cb644eb71a88db57£639db5490626ccb&conversation_id=
kjsdfkjsfkshdfiksd

S[{"to": "gligsoftZ2@krishna.test","delivered at":14362
\\§D366,"read_at":143629636?}] _,/

Receiving Replies from the recipient

The cloud service provides the ability to receive replies to sent messages. In order to receive the messages, the client
must implement a Webservice that can receive the messages. Client must implement following to receive messages

Generate RSA 2048-bit public/private keypair
Upload the public key to qligSOFT service
Implement Webservice

Decrypt the attachment with the private key

A

Let’s go through details of each step.

Generate Public/Private keypair
You can use crypto library such as OpenSSL to generate public/private keys. Following is a sample code in Ruby to
generate these keys.

g N

2048 is key strength
privkey = OpenSSL::PKey::RSA.new(2048)

Get public key in PEM format
pubkey = privkey.public key.to pem pkcsé8

Save public key into a file

/

Upload the public key to gligSOFT service
gligSOFT provides a Webservice to upload the public key.

Request URL: https://capi.qgligsoft.com/secure_messages/set_sender_pubkey?sender=john.doe@qlig.com

Request: PUT

Parameters:
Parameter M/O Description
api_key M This should match the generated API key from the Admin Portal
sender M The Email address of the sender. This is the same ID that is used
in “from” when sending message. Sender must be a qliq user.
Attachment:
Public Key File

Following HTTP Responses you will receive when sending message:

200 — The APl executed successfully and the key is applied to the user
400 — The request was incorrect, please make sure that passed arguments are matching format in
method's documentation.
401 — Unauthorized. You attempt to authenticate with an invalid API key.
403 — Forbidden. Not allowed to set the Public Key. Normally this happens if the user is with the ID
does not exist in the system or already in “Active” or “Accepted” state. You can only set key for user
who is “Inactive” or in “Pending” state.

e 500 - Internal Server Error. Something unexpected happened on our end. Please try again or contact
support.

https://webprod.qliqsoft.com/secure_messages/send

Example curl command

~

S curl -¥ PUT -F
"api key=02a7eaf78181d2c9f5f6800cfb6a8798” -F

“sender=test@test.com” -F key=Cpubkey.pem
https://capi.gligsoft.com/secure messages/set sender

pubkey

S CK

o /

Implement Webservice to receive message
On your web platform go ahead and implement a webservice that can receive POST requests. Copy the URL for the

webservice in gqligSOFT Dashboard.

- Dashboard Users Subgroups External Groups Oncall Scheduling Devices Admins Security Settings gigSTOR gligDIRECT

Admin Activity User Activity Message Activity Service Logs | Cloud Messaging API | Profile

MobileQliq glic Admin guide | User guide

615 Frederick

= Cloud Messaging API

Cloud Messaging APl
APIURL b Click to download API Guide
https://webprod.gligsoft.com/secure_messages

Isend

APIKEY [3605411a6b84871e83652655afdec045 ey, Sused serding secine

Regenerate API Key

Reply AP The replies o messages are posted to
URL® https://hospital.com/secure_message_replies this U&L *
|

Save

Receive and Decrypt Replies
When recipient of the message replies, your webservice receives a POST on the URL with the reply as an attachment.
The Reply is encrypted with the public key that you have set before. You need to you the associated private key to

decrypt the message.

Following parameters are sent along with the attachment:

Parameter M/O Description

This is the same conversation_id that is sent back when you sent
the first message.

conversation_id M

message_id M This is the ID of the reply

Once you decrypt the reply, you will see the reply in following JSON format:

“Message”: {
“Command”: “extended-im”,
“Subject”: “text”,
“Type”: “u2u”,
“Data”: {
“conversationUuid”: <conversation id>,
“convesationSubject”: <the subject you specified>,
“messageld”: <The message id for this reply>,
“text”: <content of the message>,
“createdAt”: <UTC time at which this message is created>
“attachments”: [{ // Empty of there are no attachments
“encryptionMethod”: 1, // AES 256
“fileName”: <file name>,,
“key”: <AES 256 bit Key>,
“mime”: <Type of the attachment>,
“size”: <size of the file>,
‘url”: <URL where the encrypted file is located>,

“thumbnail”: <For image/video attachments only>

1l

}

Currently only one attachment per message supported. When you see attachment after decrypting the message, you need to
download the encrypted attachment and decrypt it with the AES-256 key present in the message.

Following Algorithm shall be used to decrypt the message.

Decode Base64 attachment

Create chunks of 256 bytes (The RSA key size)
Decrypt each chunk with the RSA private key
Join the decrypted chunks

el s

Following is the sample C++ code:

static std::string decryptWithKeyFromBase64 (const std::string& encryptedBase64,
EVP_PKEY *privKey, bool *ok = 0)

BIO *mem = BIO new mem buf ((void *)encryptedBase64.c str(),
encryptedBaseb4.size());

BIO *b64 = BIO new(BIO_f base64());
mem = BIO push(b64, mem);

std::vector<char> encryptedData;
char inbuf[512];
int inlen;
while ((inlen = BIO read(mem, inbuf, sizeof (inbuf))) > 0)
{
for (int 1 = 0; 1 < inlen; ++1)
encryptedData.push back(inbuf[i]);

BIO free all (mem);

return decryptWithKey (encryptedData, privKey, ok);

static std::string decryptWithKey (const std::vector<char>& encryptedData,
EVP_PKEY *privKey, bool *ok = 0)

if (privKey == NULL) {
PJ LOG(1l, (THIS FILE, "Cannot decrypt because privKey is NULL"));
if (ok) {

*ok = false;
}

return "";

int len = RSA size(privKey->pkey.rsa);
std::vector<char> buffer (len, '\0');
std::string decrypted;

decrypted.reserve (encryptedData.size());

if (ok)
*ok = true;

int totalBytes = encryptedData.size();
int pos = 0;

while (pos < totalBytes)
{
int bytesToDecrypt = std::min(len, totalBytes - pos);
int decrLen = RSA private decrypt (bytesToDecrypt, (const unsigned char
*)encryptedData.data() + pos, (unsigned char *) buffer.data(), privKey->pkey.rsa,
RSA PKCS1 PADDING) ;

if (decrlLen == -1)

{
logAndClearError ("Error in RSA private decrypt:");

if (ok)
*ok = false;
break;
}
decrypted.append ((const char *)buffer.data(), decrlen);

pos += bytesToDecrypt;

}

return decrypted;

}
Ruby Example Code

def decrypt_msg private_key, msg
data_chunks = []
key size = 256
begin
Base64.decode64(msg) .bytes.each_slice(key size) do |slice]
data_chunks << private_key.try(:private_decrypt, slice.pack("C*"))
end
clear_msg = data_chunks.join("")
rescue
clear_msg = failed_to_decrypt_msg
end
clear_msg
end

Update Reply as Read

When the message reply is posted to the web URL you have provided, the message is marked as “delivered”. You need
to explicitly call “update_message_status” to mark the message as “read”.

Request URL: https://capi.gligsoft.com/secure_messages/update_message_status

Request: PUT

Parameters

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

sender M The Email address of the sender. This is the same ID that is used
in “from” when sending message for the conversation

conversation_id M The id of this conversation

message_id M The id of the reply that is posted to your URL

status M “opened” to set the status as read
“acked” to set the status as acknowledged if the original reply
has “Request Acknowledgement” flag set

https://webprod.qliqsoft.com/secure_messages/send

/f; curl -X PUT -F ﬁ\\

"api key=02a7eaf78181d2c9f5f6800cfb6a8799” -F
“sender=test@test.com” -F

“conversation id=jsdfjsdfsjshfsdf” -F

"message id=skdjfskjfksdhfksjd” -F “status=opened”
https://capi.gligsoft.com/secure messages/update mess

S QK

/

Annex A. Sending SMS to Patients/Partners

Cloud Messaging APl can be used to send SMS messages to Patients. Patients don’t need to download Qliq App to get
these messages. Moreover Patients can reply to these messages and the the replies are POSTed back to a webhook or
the replies can be queried. QligSOFT considers Patient’s Phone Number as PHI and does not store in the Qlig DB. Only
Last 4 digits of the Phone Number are stored for troubleshooting purposes.

Sending SMS

Request URL: https://capi.qgligsoft.com/secure_messages/send

Request: POST

Response: JSON Data

Request Params:

Parameter M/O | Description

api_key M This should match the generated API key from the Admin Portal

to M Mobile Number of the Patient/Recipient.

from o This is the email address of the member. You must create a member

with valid email before using the email in the from field. If the from
field is not specified, the Group’s Point of Contact is used for the
From field. Recipient will see the message from this from user.

subject 0] You can specify optional subject for the text. Qlig uses subject
field to group the messages into conversation.

text M This is the actual text of the message.
no_phi M APl user should not send PHI through SMS since it is not HIPAA
compliant. Set no_phi to true
reply_posting_url The webhook implemented by the client to receive replies
Response:
Parameter M/O Description
conversation_id M Unique for the recipient. There is one conversation id per
recipient
message_id M Unique ID for each message sent.
statatus M Status of the message

https://webprod.qliqsoft.com/secure_messages/send

Example Request:

chrome://poster - Poster - Mozilla Firefox

Request

URL: https://webprod.gligsoft.com/secure_messages/send

User Auth: ‘ ‘

Timeout (s): 30 \

Actions

1

GET m POST PUT DELETE - g‘

Content to Send Headers Parameters

File: \ \

Browse...

Content Type: application/json

Content Options: |Base64 Encode Eody from Parameters

{
"api_key": "kshdfkshfkhasdfsdfjhdf",

"to": "4693121234",

"from": "sender@client.com"”,
"subject": "Cloud API",

"text": "First Message",
"no_phi": true

"api_key": "1239¢32379ec0725dbb8bc1b87ab9094e",
"from": "notifier@cardinal.com",

"to": "4693110979",

"text": "Your forgot to take a pill",

“subject": "From Cardinal Health",

"no_phi": true

}

Example Response:

n, u

{ “status”: “Queued for Delivery”,
“Conversation_id”: “1ksdfjkhskfhsdsfsdfsdhfjks”,

“Message_id": “kjshfkskfhsdfsdkjfsfs”

Receiving Replies

Client can receive replies in two ways.

1. When a reply from the recipient arrives, the reply is POSTed to the Webhook provided by the Client in

“reply_posting_url”

2. If the Client has a problem with webhook, Client can use the “get_replies” API

Request URL: https://capi.gligsoft.com/secure_messages/get_replies

Request: GET

Response: JSON Data

Request Params:

Parameter M/O | Description

api_key M This should match the generated APl key from the Admin Portal

from o) Mobile Number of the Patient/Recipient. If the Mobile Number is
not given all the replies from all recipients are returned

since 0 This is a UTC time. All the replies arrived after “since” are returned. If
th “since” is not given all the replies regardless of when they arrived
are returned

Response:

Array of JSON objects are returned. If there are no replies, empty array is returned.

Parameter M/O Description

conversation_id M Unique for the recipient. There is one conversation id per
recipient

message_id M Unique ID for each message sent.

reply M Reply Message

received_at M Time at which the Reply was received

https://webprod.qliqsoft.com/secure_messages/get_replies

Example Request:

chrome://poster - Poster - Mozilla Firefox

Request
URL: | https:/iwebprod.gligsoft.com/secure_messages/get_replies?api_key=89120eb17e186a64b70d41317fele697&since=2018-1-17 l
User Auth: '9/'

Timeout (s): | 30

Actions

GET POST PUT DELETE . w

Content to Send Headers Parameters
File:

Content Type:

Content Options: Base64 Encode| Body from Parameters

8]

Browse...

Example Response:

Response

GET on http://localhost:3000/secure_messages/get_replies?api_key=89120eb17e186a64b70d41317fe1e697&
since=2018-1-17
Status: 200 OK

[{"conversation id":"6592daad9de5bd323bT3d371e38a5708229c23139%e1ca99b2563ea989%a2e51ef", "message id":"4f23a8215c2
8eel288b78f3f3ada2555", "sender info":"XXXXXX0979","reply":"Test","received at":"2018-01-17T18:30:09-11:00"}]

Annex B. Sending Secure Message to Non-Qliq User

Cloud Messaging APl can be used to send Secure Message to Non-Qlig User. For example, you need to send a patient
referral or clinical summary to a provider who is not currently a Qlig User, the APl can help systems to generate such
messages.

Sending Non-Qliq User

Request URL: https://capi.qgligsoft.com/secure_messages/send

Request: POST

Response: JSON Data

Request Params:

Parameter M/O | Description

api_key M This should match the generated API key from the Admin Portal

to M Mobile Number of the Patient/Recipient.

from 0] This is the email address of the member. You must create a member

with valid email before using the email in the from field. If the from
field is not specified, the Group’s Point of Contact is used for the
From field. Recipient will see the message from this from user.

subject 0] You can specify optional subject for the text. Qlig uses subject
field to group the messages into conversation.

text M This is the actual text of the message.

send_non_glig_us | M APl User must set this value to “true”. Otherwise, the message will
er not be delivered.

expiry_in_minutes | O The Secure Message Link generated by this operation has limited life

time to protect against sharing. The durection normally 1 day (1440
minutes). APl user can customize the expiry with this field. The
maximum time the Secure Message Link will be active is 7 days.

Response:
Parameter M/O Description
conversation_id M Unique for the recipient. There is one conversation id per

recipient

message_id M Unique ID for each message sent.

https://webprod.qliqsoft.com/secure_messages/send

statatus M Status of the message

Example Request:

{

"api_key": "1239¢32379ec0725dbb8bc1b87ab9094e",

"from": "notifier@cardinal.com",
"to": "4693110979",
“text": "Your forgot to take a pill",
"subject": "From Cardinal Health",
"send_non_qglig_user": true,
“expiry_in_minutes”: 60

}

Example Response:
{ “status”: “Queued for Delivery”,
“Conversation_id”: “1ksdfjkhskfhsdsfsdfsdhfjks”,

“Message_id”: “kjshfkskfhsdfsdkjfsfs”

