
Qliq Cloud Messaging API Guide

QliqSOFT provides Cloud API for third party applications to send Secure Messages to Qliq users. Following

steps need to be performed prior to sending messages:

1. The Application provider must register for a Group Account. Make sure that “My Organization” is

selected.

2. Once the group is activated, the Admin of the group must generate an API key in order to use Cloud

Messaging.

Once the key is generated, you can start using the Cloud Messaging API from your Application.

Qliq Cloud Messaging API is a RESTful POST command with parameters like below:

NOTE: Use %20 or + for space in Query String. Particularly for “subject” or “text” field.

If you are trying to send messages longer than 150 characters, User JSON Payload format to sent the message

Request URL: https://capi.qliqsoft.com/secure_messages/send

Request: POST

Response: JSON Data

https://webprod.qliqsoft.com/secure_messages/send

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

to M This is the email address of the recipient. If the person with
email is already a member of the Qliq group, the message is
routed to the Qliq App on the user’s device. If you want to send
a broadcast message to all members of the Group or Subgroup,
you should use the QliqID of the Group or Subgroup in “to”
field.

from O This is the email address of the member. You must create a
member with valid email before using the email in the from
field. If the from field is not specified, the Group’s Point of
Contact is used for the From field. Recipient will see the
message from this from user.

subject O You can specify optional subject for the text. Qliq uses subject
field to group the messages into conversation.

priority O Set the priority of the message. The options are “fyi”, “asap”,
“urgent”.

text M This is the actual text of the message.

conversation_id O This can be used to group all the messages inside a single
conversation.

Cloud API JSON Body Example:

You can also send an attachment with the request as MIME. You can only send one attachment per request.

PDF, WORD, EXCEL, PNG/JPG are allowed to be sent as attachments.

Here is an example JSON payload of sending an attachment using Cloud Messaging API

{

 "api_key": "<from cloud messaging api tab>",

 "from": "<email of the qliq user in the group",

 "to": "<email/qliqID/mobile number of the recipient",

 "subject": "String here",

 "text": "String here",

 "attachment": {

 "content_type": "image/png",

 "file_name": "qliq-qr.png",

 "base64":

"iVBORw0KGgoAAAANSUhEUgAAAPgAAAD4AQMAAAD7H7lIAAAABlBMVEUAAAD///+l2Z/dAAABCUlEQVRYw+

WZQRLDMAwC+f+n6SGSwWmnD4DkEI82J42FsAz+fxDP8Ty7JkkoWsA3Twd6tIE/kdksnrcqjoO0V5q4UkSiiksHOf

n5VT+x3JTQ3i/9TOWnE3qqfvTPWD56MP8MN8lM57u27bBFggI+8PiiK3UFnFrj8obWL5K5LLEpwxrmAm6+cDoij1

9AC5c1sB9RwWH2eGUCOGLRwbcwNj8AfD6QzFUFuD6qj2w++eEtDi6Z2ZzuEKh2YcYpmksToTg2ks91PhqhkFGq

4LdZlDjcU6NgTjsHmiV+T0pyuc3HfGTCMr73A2sVTUEa+O2LfVKYzml3Q5BMyDJkc1hncI1494dQ3n3/+wGvUwfoE

YT/GgAAAABJRU5ErkJggg=="

 }

}

If you would like to send multiple attachments, you can use the conversation_id returned for the first

attachment, and use it to send the second attachment.

Sending Broadcast Message to Group

Your application can send a broadcast message to an entire group or a subgroup or external group. When you

send a broadcast message, everyone in the group will receive the message. If a recipient replies, the reply

message goes to the sender’s address only.

In Qliq service each group is identified by unique “QliqID”. You can find the QliqID of the group you are

interested in from the Admin Portal.

Sending multiple messages for within the same conversation

Qliq provides the ability to group multiple messages between a sender and a receiver into a conversation.

Typically the conversation is tied to a subject. In healthcare, it can be used to tied to one episode, one patient

and/or one problem.

Each conversation is uniquely identified by conversation_id. To send messages that belong to one

conversation, first send the message without a conversation_id parameter, the service returns system

generated unique conversation_id which should be used while sending subsequent messages. Whenever you

would like to change the conversation, send the message without conversation_id. This will create a brand

new conversation.

Below is an example of sending Broadcast message to “OnCall” subgroup:

Following HTTP Responses you will receive when sending message:

● 202 – The API executed successfully and the message is queued.

● 400 – The request was incorrect, please make sure that passed arguments are matching format in

method's documentation.

● 401 – Unauthorized. You attempt to authenticate with an invalid API key.

● 403 – Forbidden. Not allowed to send message.

● 404 – Not Found. You attempt to request a resource which doesn't exist. Check your URL

● 500 – Internal Server Error. Something unexpected happened on our end. Please try again or contact

support.

Testing from Command Line

If you have command line tool such as CURL http://curl.haxx.se/ you can run the test the message delivery directly

before integrating the logic into your app. Below is an sample of testing from command line.

If the request is good, you will see a JSON response to the curl command. You will see conversation_id that

can be used to send subsequent message to the same conversation and the message_id that can be used to

query the message status.

Below is the example of sending message with attachment. Make sure that the attachment is in the current

directory.

http://curl.haxx.se/

With the example above, the request packet looks like this:

POST /secure_messages_send HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Content-Type: multipart/form-data; boundary=38516d25820c4a9aad05f1e42cb442f4

Host: capi.qliqsoft.com

--38516d25820c4a9aad05f1e42cb442f4

Content-Disposition: form-data; name="file"; filename="GNYHA.pdf"

Content-Type: application/pdf

Content-Encoding: base64

H4sICI0fXVQAA3BhZ2UucGRmAAvOz01VCE7MLchJVQhITE8FAAyOwbUQAAAA

--38516d25820c4a9aad05f1e42cb442f4--

Notes:

1. Make sure the you use HTTPS and POST method when submitting the RESTful API

2. Make sure that the subgroup, group, external group QliqID is correct before adding it to “to” field of the request.

3. Make sure that the email address is correct in the to field if you are sending message to specific user.

Retrieving Message Status

The Cloud API provides a RESTful API for querying the status of the message. The message_id is mandatory to query for

the status of the message along with the api_key.

Request URL: https://capi.qliqsoft.com/secure_messages/message_status

Request: GET

Response: JSON Data

The response to the GET request is a JSON array. The array contains one or more recipient’s message status. If the

message is single party message, expect to see one element in the array. If the message is a group or broadcast

message, you might see more than one element in the array.

If the message is not delivered to any recipients, expect to see array with no elements (ex: [])

Each element will have the email address of the recipient and the delivery time in Unix Epoch Time

https://en.wikipedia.org/wiki/Unix_time. It can contain read time as well in Unix Epoch Time.

The Unix Epoch Time can be converted to local time for display or other purposes.

[{ “to”: <email_address1>,

 “delivered_at”: <unix_epoch_time1>,

 “read_at”: <unix_epoch_time1>

https://webprod.qliqsoft.com/secure_messages/send
https://en.wikipedia.org/wiki/Unix_time

 },

 { “to”: <email_address2>,

 “delivered_at”: <unix_epoch_time2>,

 “read_at”: <unix_epoch_time2>

 }

]

If the recipient did not read the message, the read_at will not be present.

Receiving Replies from the recipient

The cloud service provides the ability to receive replies to sent messages. In order to receive the messages, the client

must implement a Webservice that can receive the messages. Client must implement following to receive messages

1. Generate RSA 2048-bit public/private keypair

2. Upload the public key to qliqSOFT service

3. Implement Webservice

4. Decrypt the attachment with the private key

Let’s go through details of each step.

Generate Public/Private keypair

You can use crypto library such as OpenSSL to generate public/private keys. Following is a sample code in Ruby to

generate these keys.

Upload the public key to qliqSOFT service

qliqSOFT provides a Webservice to upload the public key.

Request URL: https://capi.qliqsoft.com/secure_messages/set_sender_pubkey?sender=john.doe@qliq.com

Request: PUT

Parameters:

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

sender M The Email address of the sender. This is the same ID that is used
in “from” when sending message. Sender must be a qliq user.

Attachment:

Public Key File

Following HTTP Responses you will receive when sending message:

● 200 – The API executed successfully and the key is applied to the user

● 400 – The request was incorrect, please make sure that passed arguments are matching format in

method's documentation.

● 401 – Unauthorized. You attempt to authenticate with an invalid API key.

● 403 – Forbidden. Not allowed to set the Public Key. Normally this happens if the user is with the ID

does not exist in the system or already in “Active” or “Accepted” state. You can only set key for user

who is “Inactive” or in “Pending” state.

● 500 – Internal Server Error. Something unexpected happened on our end. Please try again or contact

support.

https://webprod.qliqsoft.com/secure_messages/send

Example curl command

Implement Webservice to receive message

On your web platform go ahead and implement a webservice that can receive POST requests. Copy the URL for the

webservice in qliqSOFT Dashboard.

Receive and Decrypt Replies

When recipient of the message replies, your webservice receives a POST on the URL with the reply as an attachment.

The Reply is encrypted with the public key that you have set before. You need to you the associated private key to

decrypt the message.

Following parameters are sent along with the attachment:

Parameter M/O Description

conversation_id M This is the same conversation_id that is sent back when you sent
the first message.

message_id M This is the ID of the reply

Once you decrypt the reply, you will see the reply in following JSON format:

{

 “Message”: {

“Command”: “extended-im”,

“Subject”: “text”,

“Type”: “u2u”,

“Data”: {

 “conversationUuid”: <conversation id>,

 “convesationSubject”: <the subject you specified>,

 “messageId”: <The message id for this reply>,

 “text”: <content of the message>,

 “createdAt”: <UTC time at which this message is created>

 “attachments”: [{ // Empty of there are no attachments

“encryptionMethod”: 1, // AES 256

 “fileName”: <file name>,,

 “key”: <AES 256 bit Key>,

 “mime”: <Type of the attachment>,

 “size”: <size of the file>,

 ‘url”: <URL where the encrypted file is located>,

“thumbnail”: <For image/video attachments only>

 }]

}

 }

}

Currently only one attachment per message supported. When you see attachment after decrypting the message, you need to
download the encrypted attachment and decrypt it with the AES-256 key present in the message.

Following Algorithm shall be used to decrypt the message.

1. Decode Base64 attachment
2. Create chunks of 256 bytes (The RSA key size)
3. Decrypt each chunk with the RSA private key
4. Join the decrypted chunks

Following is the sample C++ code:

 static std::string decryptWithKeyFromBase64(const std::string& encryptedBase64,

 EVP_PKEY *privKey, bool *ok = 0)

 {

 BIO *mem = BIO_new_mem_buf((void *)encryptedBase64.c_str(),

 encryptedBase64.size());

 BIO *b64 = BIO_new(BIO_f_base64());

 mem = BIO_push(b64, mem);

 std::vector<char> encryptedData;

 char inbuf[512];

 int inlen;

 while ((inlen = BIO_read(mem, inbuf, sizeof(inbuf))) > 0)

 {

 for (int i = 0; i < inlen; ++i)

 encryptedData.push_back(inbuf[i]);

 }

 BIO_free_all(mem);

 return decryptWithKey(encryptedData, privKey, ok);

 }

 static std::string decryptWithKey(const std::vector<char>& encryptedData,

 EVP_PKEY *privKey, bool *ok = 0)

 {

 if (privKey == NULL) {

 PJ_LOG(1, (THIS_FILE, "Cannot decrypt because privKey is NULL"));

 if (ok) {

 *ok = false;

 }

 return "";

 }

 int len = RSA_size(privKey->pkey.rsa);

 std::vector<char> buffer(len, '\0');

 std::string decrypted;

 decrypted.reserve(encryptedData.size());

 if (ok)

 *ok = true;

 int totalBytes = encryptedData.size();

 int pos = 0;

 while (pos < totalBytes)

 {

 int bytesToDecrypt = std::min(len, totalBytes - pos);

 int decrLen = RSA_private_decrypt(bytesToDecrypt, (const unsigned char

*)encryptedData.data() + pos, (unsigned char *) buffer.data(), privKey->pkey.rsa,

RSA_PKCS1_PADDING);

 if (decrLen == -1)

 {

 logAndClearError("Error in RSA_private_decrypt:");

 if (ok)

 *ok = false;

 break;

 }

 decrypted.append((const char *)buffer.data(), decrLen);

 pos += bytesToDecrypt;

 }

 return decrypted;

 }

Ruby Example Code

 def decrypt_msg private_key, msg
 data_chunks = []
 key_size = 256
 begin
 Base64.decode64(msg).bytes.each_slice(key_size) do |slice|
 data_chunks << private_key.try(:private_decrypt, slice.pack("C*"))
 end
 clear_msg = data_chunks.join("")
 rescue
 clear_msg = failed_to_decrypt_msg
 end
 clear_msg
 end

Update Reply as Read

When the message reply is posted to the web URL you have provided, the message is marked as “delivered”. You need
to explicitly call “update_message_status” to mark the message as “read”.

Request URL: https://capi.qliqsoft.com/secure_messages/update_message_status

Request: PUT

Parameters

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

sender M The Email address of the sender. This is the same ID that is used
in “from” when sending message for the conversation

conversation_id M The id of this conversation

message_id M The id of the reply that is posted to your URL

status M “opened” to set the status as read
“acked” to set the status as acknowledged if the original reply
has “Request Acknowledgement” flag set

https://webprod.qliqsoft.com/secure_messages/send

Annex A. Sending SMS to Patients/Partners
Cloud Messaging API can be used to send SMS messages to Patients. Patients don’t need to download Qliq App to get

these messages. Moreover Patients can reply to these messages and the the replies are POSTed back to a webhook or

the replies can be queried. QliqSOFT considers Patient’s Phone Number as PHI and does not store in the Qliq DB. Only

Last 4 digits of the Phone Number are stored for troubleshooting purposes.

Sending SMS
Request URL: https://capi.qliqsoft.com/secure_messages/send

Request: POST

Response: JSON Data

Request Params:

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

to M Mobile Number of the Patient/Recipient.

from O This is the email address of the member. You must create a member
with valid email before using the email in the from field. If the from
field is not specified, the Group’s Point of Contact is used for the
From field. Recipient will see the message from this from user.

subject O You can specify optional subject for the text. Qliq uses subject
field to group the messages into conversation.

text M This is the actual text of the message.

no_phi M API user should not send PHI through SMS since it is not HIPAA
compliant. Set no_phi to true

reply_posting_url The webhook implemented by the client to receive replies

Response:

Parameter M/O Description

conversation_id M Unique for the recipient. There is one conversation id per
recipient

message_id M Unique ID for each message sent.

statatus M Status of the message

https://webprod.qliqsoft.com/secure_messages/send

Example Request:

{

 "api_key": "1239c32379ec0725dbb8bc1b87ab9094e",

 "from": "notifier@cardinal.com",

 "to": "4693110979",

 "text": "Your forgot to take a pill",

 "subject": "From Cardinal Health",

 "no_phi": true

}

Example Response:

{ “status”: “Queued for Delivery”,

 “Conversation_id”: “1ksdfjkhskfhsdsfsdfsdhfjks”,

 “Message_id”: “kjshfkskfhsdfsdkjfsfs”

}

Receiving Replies

Client can receive replies in two ways.

1. When a reply from the recipient arrives, the reply is POSTed to the Webhook provided by the Client in

“reply_posting_url”

2. If the Client has a problem with webhook, Client can use the “get_replies” API

Request URL: https://capi.qliqsoft.com/secure_messages/get_replies

Request: GET

Response: JSON Data

Request Params:

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

from O Mobile Number of the Patient/Recipient. If the Mobile Number is
not given all the replies from all recipients are returned

since O This is a UTC time. All the replies arrived after “since” are returned. If
th “since” is not given all the replies regardless of when they arrived
are returned

Response:

Array of JSON objects are returned. If there are no replies, empty array is returned.

Parameter M/O Description

conversation_id M Unique for the recipient. There is one conversation id per
recipient

message_id M Unique ID for each message sent.

reply M Reply Message

received_at M Time at which the Reply was received

https://webprod.qliqsoft.com/secure_messages/get_replies

Example Request:

Example Response:

Annex B. Sending Secure Message to Non-Qliq User
Cloud Messaging API can be used to send Secure Message to Non-Qliq User. For example, you need to send a patient

referral or clinical summary to a provider who is not currently a Qliq User, the API can help systems to generate such

messages.

Sending Non-Qliq User
Request URL: https://capi.qliqsoft.com/secure_messages/send

Request: POST

Response: JSON Data

Request Params:

Parameter M/O Description

api_key M This should match the generated API key from the Admin Portal

to M Mobile Number of the Patient/Recipient.

from O This is the email address of the member. You must create a member
with valid email before using the email in the from field. If the from
field is not specified, the Group’s Point of Contact is used for the
From field. Recipient will see the message from this from user.

subject O You can specify optional subject for the text. Qliq uses subject
field to group the messages into conversation.

text M This is the actual text of the message.

send_non_qliq_us
er

M API User must set this value to “true”. Otherwise, the message will
not be delivered.

expiry_in_minutes O The Secure Message Link generated by this operation has limited life
time to protect against sharing. The durection normally 1 day (1440
minutes). API user can customize the expiry with this field. The
maximum time the Secure Message Link will be active is 7 days.

Response:

Parameter M/O Description

conversation_id M Unique for the recipient. There is one conversation id per
recipient

message_id M Unique ID for each message sent.

https://webprod.qliqsoft.com/secure_messages/send

statatus M Status of the message

Example Request:

{

 "api_key": "1239c32379ec0725dbb8bc1b87ab9094e",

 "from": "notifier@cardinal.com",

 "to": "4693110979",

 "text": "Your forgot to take a pill",

 "subject": "From Cardinal Health",

 "send_non_qliq_user": true,

 “expiry_in_minutes”: 60

}

Example Response:

{ “status”: “Queued for Delivery”,

 “Conversation_id”: “1ksdfjkhskfhsdsfsdfsdhfjks”,

 “Message_id”: “kjshfkskfhsdfsdkjfsfs”

}

